Name # CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education ### PHYSICAL SCIENCE 0652/03 Paper 3 October/November 2003 1 hour 15 minutes Candidates answer on the Question Paper. No Additional Materials are required. #### **READ THESE INSTRUCTIONS FIRST** Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen in the spaces provided on the Question Paper. You may use a pencil for any diagrams, graphs, tables or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. #### Answer all questions. At the end of the examination, fasten all your work securely together. The number of marks is given in brackets $[\]$ at the end of each question or part question. A copy of the Periodic Table is printed on page 16. If you have been given a label, look at the details. If any details are incorrect or missing, please fill in your correct details in the space given at the top of this page. Stick your personal label here, if provided. | For Exam | iner's Use | |----------|------------| | 1 | | | 2 | | | 3 | | | 4 | | | 5 | | | 6 | | | 7 | | | 8 | | | 9 | | | Total | | This document consists of 15 printed pages and 1 blank page. | | The soluble salts of most metals can be prepared by adding the insoluble carbonate of the metal to the appropriate acid until excess carbonate is present. | | | |-----|--|--|--| | (a) | Name the acid which would be added to $copper(\mathrm{II})$ carbonate to produce $copper(\mathrm{II})$ nitrate. | | | | | [1] | | | | (b) | Write a balanced equation for the reaction. | | | | | [2] | | | | (c) | Describe the changes that you would observe during this reaction. | | | | | | | | | | [2] | | | | (d) | Describe how you would obtain a solid sample of the copper(II) nitrate. | | | | | | | | | | | | | | | [2] | | | | (e) | Suggest why it is not possible to use a similar method to prepare the salt sodium nitrate. | | | | | | | | | | [1] | | | 2 A student designs the apparatus of Fig. 2.1 as a device to detect thermal radiation. The flask is tightly covered with a material that absorbs thermal radiation well. Fig. 2.1 | (1) | flask and explain why it would be effective for absorbing thermal radiation. | |------|---| | | | | | | | | | | | | | | | | | [3] | | (ii) | Describe and explain what the student would see when intense thermal radiation is shone onto the apparatus. | | | | | | | | | | | | | | | | | | [2] | | (b) | (i) | Explain why the apparatus is not likely to detect low intensity thermal radiation. | |-----|------|--| | | | | | | | | | | | [2] | | | (ii) | State and explain two changes that could be made in order to improve the effectiveness of this apparatus. | [4] | 3 The diagrams in Fig. 3.1 show the crystal structures of two forms of the element carbon. Fig. 3.1 In diamond crystals every carbon atom is linked to four other carbon atoms by covalent bonds. In graphite each carbon atom is linked to three other carbon atoms by covalent bonds to form layers. The fourth outer shell electrons in the carbon atoms then form delocalised layers of electrons. (a) Explain how these differences in the crystal structures produce differences in the following properties of the two forms | (i) | hardness, | |------|--------------------------| | | | | | | | | | | | [2] | | (ii) | electrical conductivity. | | | | | | | | | | | | [2] | | (b) | During combustion, carbon and many of its compounds combine with oxygen to form two different oxides, carbon monoxide and carbon dioxide. | | | |-----|---|---|--| | | (i) | Draw a diagram to show the formation of the bonds in carbon dioxide. | | | | | You need only show the outer shell electrons in each atom. | [2] | | | | (ii) | State the condition needed for combustion to form carbon monoxide rather than carbon dioxide. | | | | | | | | | | [1] | | | (| (iii) | Explain how carbon monoxide affects the respiration of mammals. | | ## **BLANK PAGE** [Question 4 can be found on page 8] 0652/03/O/N/03 **[Turn over** 4 A cathode-ray oscilloscope (c.r.o.) is used to investigate the circuit of Fig. 4.1. Fig. 4.1 Fig. 4.2 shows the trace on the oscilloscope screen together with the time-base and y-gain (voltage) settings when the oscilloscope is connected across **AD**. Voltage (y-gain): 4V/division time-base: 20ms/division Fig. 4.2 (a) (i) Calculate the peak voltage (amplitude) across AD. (ii) Calculate the peak current in the 10 Ω resistor. | (iii) | The primary (input) coil of the transformer has 30 turns and the secondary has 20 turns. | |---------|---| | | Calculate the peak input voltage supplied to the transformer. | | | Write down the equation that you use and show all your working. | | (iv) | $voltage \ supplied =V \ \ [3]$ Calculate the time taken for one complete cycle of the a.c. supply. | | (b) (i) | time for one cycle = | | (ii) | On Fig. 4.3, draw the trace that would be seen if the c.r.o. were connected across BC . | | | | | | | | | | | | | | | | | | | Voltage (y-gain): 4V/division time-base: 20ms/division Fig. 4.3 [1] **5** Fig. 5.1 shows an experiment to compare the rates of movement of two gases. Fig. 5.1 After a few minutes, solid ammonium chloride appears at **X** inside the tube. The equation for the reaction that occurs can be written as below. $$NH_3(g) + HCl(g) \rightarrow NH_4Cl(s)$$ | | 3(3) 4 - (3) | |-----|---| | (a) | Name the process by which the two gases move along the tube[1] | | (b) | Suggest and explain why the solid is formed nearer to the end where the hydrogen chloride enters the tube. | | | | | | | | | [2] | | (c) | Explain this reaction in terms of proton transfer. | | | | | | | | | [2] | | (d) | Describe the chemical test that you could perform to show that the solid contained ammonium ions and state the result you would expect. | | | test | | | | | | result | | | [2] | | 6 | (a) | Define <i>refractive index</i> . | | |---|-----|----------------------------------|---| - | _ | **(b)** Fig. 6.1 shows a fish below the surface of water in a lake. Fig. 6.1 | (i) | Explain why refraction means that the fish can see through a wider range of angles than if there were no water present. | |-----|---| | | | | | | | | ــــــــــــــــــــــــــــــــــــــ | (ii) Calculate the refractive index of the water in the lake. Write down the equation that you use and show all your working. refractive index =[3] | 7 Aluminium is a metallic element in Group III of th amphoteric. | | ninium is a metallic element in Group III of the Periodic Table. Aluminium oxide is shoteric. | |--|-----|---| | | (a) | Write the formula for aluminium oxide[1] | | | (b) | Explain the meaning of the term amphoteric. | | | | | | | | | | | | [2] | | | (c) | State one use of aluminium and describe two properties that make it suitable for that use. | | | | use | | | | first property | | | | | | | | second property | | | | [3] | | | (d) | Thallium is below aluminium in Group III of the Periodic Table. | | | | Suggest, with a reason, the class of oxide that you would expect thallium to form. | | | | | | | | | | | | [2] | **8** The apparatus of Fig. 8.1 is used to take readings from which to calculate the acceleration of free fall. Fig. 8.1 As the control box is switched on the timer starts. At the same instant the steel ball is released from rest. When the ball hits the gate this opens and stops the timer. The mass of the ball is 20.0 g. | (a) | Explain what causes the steel ball to be released. | |-----|--| | | | | | | | | | | | | (b) Calculate the weight of the ball in newton. $$[g = 10 \text{ N/kg}]$$ | (c) | Explain whether air resistance is likely to affect the motion of the ball as it falls. | |-----|--| | | | | | | | | [2] | | (d) | The time measured for the ball to fall a distance of 1.2 m is 0.48 s. Calculate a value for the acceleration of free fall (g) , using these values. Show your working. | | | | | | | | | | | | | | | <i>g</i> = [4] | | 9 | One meth | od of | fpreparing | ethanol | is | the | fermentation | of | glucose. | The | equation | for | this | |---|------------|-------|------------|----------|----|------|--------------|----|----------|-----|----------|-----|------| | | process ca | an be | summarise | d as sho | wn | belo | W. | | | | | | | $\mathrm{C_6H_{12}O_6} \rightarrow \mathrm{2C_2H_5OH} + \mathrm{2CO_2}$ | (a) | State the three essential conditions for fermentation to take place. | | | | | | | | | | | | |-----|---|---|--|--|--|--|--|--|--|--|--|--| | | | [3] | | | | | | | | | | | | (b) | (i) | Calculate the relative molecular mass, $M_{\rm r}$, of glucose and of ethanol. | | | | | | | | | | | | | | [Ar:H, 1; C, 12; O, 16.] | [2] | | | | | | | | | | | | | | $M_{\rm r}$, of glucose | | | | | | | | | | | | | (ii) | Hence find the mass of ethanol that could be obtained from 36 g of glucose. | mass of ethanol = [2] | | | | | | | | | | | | | (iii) | Calculate the volume of carbon dioxide at room temperature and pressure, r.t.p., produced by fermentation of 36 g of glucose. | | | | | | | | | | | | | | 1 mole of any gas occupies 24 dm ³ at r.t.p. | volume of carbon dioxide = [2] | | | | | | | | | | | The Periodic Table of the Flements DATA SHEET בֿ Nobelium Β **Fa** Fermium Einsteinium **C**alifornium **B**erkelium **C**ontinu **Am** Americium **Pu** **Neptunium** 238 Mendelevium 101 X = atomic symbol **м** 🗙 Q Key Praseodymium 59 **Pa** Protactinium Cerium 232 **Th** Thorium 28 06 b = proton (atomic) number a = relative atomic mass The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).